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Abstract

This paper proposes the cross-quantilogram to measure the quantile de-

pendence between two time series. We apply it to test the hypothesis that one

time series has no directional predictability to another time series. We establish

the asymptotic distribution of the cross quantilogram and the corresponding

test statistic. The limiting distributions depend on nuisance parameters. To

construct consistent con�dence intervals we employ the stationary bootstrap

procedure; we show the consistency of this bootstrap. Also, we consider the

self-normalized approach, which is shown to be asymptotically pivotal under
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the null hypothesis of no predictability. We provide simulation studies and

two empirical applications. First, we use the cross-quantilogram to detect pre-

dictability from stock variance to excess stock return. Compared to existing

tools used in the literature of stock return predictability, our method provides

a more complete relationship between a predictor and stock return. Second, we

investigate the systemic risk of individual �nancial institutions, such as JP Mor-

gan Chase, Goldman Sachs and AIG. This article has supplementary materials

online.
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1 Introduction

Linton and Whang (2007) introduced the quantilogram to measure predictability in

di¤erent parts of the distribution of a stationary time series based on the correlogram

of "quantile hits". They applied it to test the hypothesis that a given time series

has no directional predictability. More speci�cally, their null hypothesis was that the

past information set of the stationary time series fxtg does not improve the predic-

tion about whether xt will be above or below the unconditional quantile. The test is

based on comparing the quantilogram to a pointwise con�dence band. This contribu-

tion �ts into a long literature of testing predictability using signs or rank statistics,

including the papers of Cowles and Jones (1937), Dufour et al. (1998), and Christof-

fersen and Diebold (2002). The quantilogram has several advantages compared to

other test statistics for directional predictability. It is conceptually appealing and

simple to interpret. Since the method is based on quantile hits it does not require

moment conditions like the ordinary correlogram and statistics like the variance ra-

tio that are derived from it, Mikosch and Starica (2000), and so it works well for

heavy tailed series. Many �nancial time series have heavy tails, see, e.g., Mandelbrot

(1963), Fama (1965), Rachev and Mittnik (2000), Embrechts et al. (1997), Ibragi-

mov et al. (2009), and Ibragimov (2009), and so this is an important consideration

in practice. Additionally, this type of method allows researchers to consider very

long lags in comparison with regression type methods, such as Engle and Manganelli

(2004). There have been a number of recent works either extending or applying this

methodology. Davis and Mikosch (2009) have introduced the extremogram, which is

essentially the quantilogram for extreme quantiles. Hagemann (2012) has introduced

a Fourier domain version of the quantilogram, see also Dette et al. (2013) for an

alternative approach. The quantilogram has recently been applied to stock returns
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and exchange rates, Laurini et al. (2008) and Chang and Shie (2011).

Our paper addresses two outstanding issues with regard to the quantilogram.

First, the construction of con�dence intervals that are valid under general depen-

dence structures. Linton and Whang (2007) derived the limiting distribution of the

sample quantilogram under the null hypothesis that the quantilogram itself is zero,

in fact under a special case of that where the process has a type of conditional het-

eroskedasticity structure. Even in that very special case, the limiting distribution

depends on model speci�c quantities. They derived a bound on the asymptotic vari-

ance that allows one to test the null hypothesis of the absence of predictability (or

rather the special case of this that they work with). Even when this model structure

is appropriate, the bounds can be quite large especially when one looks into the tail

of the distribution. The quantilogram is also useful in cases where the null hypothesis

of no predictability is not thought to be true - one can be interested in measuring the

degree of predictability of a series across di¤erent quantiles. We provide a more com-

plete solution to the issue of inference for the quantilogram. Speci�cally, we derive

the asymptotic distribution of the quantilogram under general weak dependence con-

ditions, speci�cally strong mixing. The limiting distribution is quite complicated and

depends on the long run variance of the quantile hits. To conduct inference we pro-

pose the stationary bootstrap method of Politis and Romano (1994) and prove that

it provides asymptotically valid con�dence intervals. We investigate the �nite sample

performance of this procedure and show that it works well. We also provide R code

that carries out the computations e¢ ciently. We also de�ne a self-normalized version

of the statistic for testing the null hypothesis that the quantilogram is zero, following

Lobato (2001). This statistic has an asymptotically pivotal distribution whose critical

values have been tabulated so that there is no need for long run variance estimation

or even bootstrap.
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Second, we develop our methodology inside a multivariate setting and explicitly

consider the cross-quantilogram. Linton and Whang (2007) brie�y mentioned such a

multivariate version of the quantilogram but they provided neither theoretical results

or empirical results. In fact, the cross correlogram is a vitally important measure of

dependence between time series: Campbell et al. (1997), for example, use the cross

autocorrelation function to describe lead lag relations between large stocks and small

stocks. We apply the cross-quantilogram to the study of stock return predictability;

our method provides a more complete picture of the predictability structure. We also

apply the cross quantilogram to the question of systemic risk. Our theoretical results

described in the previous paragraph are all derived for the multivariate case.

2 The Cross-Quantilogram

Let fxt : t 2 Zg be a two dimensional strictly stationary time series with xt �

(x1t; x2t)
|
and let Fi(�) denote the distribution function of the series xit with density

function fi(�) for i = 1; 2. The quantile function of the time series xit is de�ned as

qi(�i) = inffv : Fi(v) � �ig for �i 2 (0; 1); for i = 1; 2. Let q� = (q1(�1); q2(�2))
|
for

� � (�1; �2)
|
.

We consider a measure of serial dependence between two events fx1t � q1(�1)g and

fx2t�k � q2(�2)g for arbitrary quantiles. In the literature, f1[xit � qi(�)]g is called

the quantile-hit or quantile-exceedance process for i = 1; 2, where 1[�] denotes the

indicator function taking the value one when its argument is true, and zero otherwise.

The cross-quantilogram is de�ned as the cross-correlation of the quantile-hit processes

��(k) =
E
�
 �1(x1t � q1(�1)) �2(x2t�k � q2(�2))

�q
E
�
 2�1(x1t � q1(�1))

�q
E
�
 2�2(x2t � q2(�2))

� (1)

for k = 0;�1;�2; : : : ; where  a(u) � 1[u < 0]� a. The cross-quantilogram captures
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serial dependency between the two series at di¤erent quantile levels. In the special case

of a single time series, the cross-quantilogram becomes the quantilogram proposed

by Linton and Whang (2007). Note that it is well-de�ned even for processes with

in�nite moments. Like the quantilogram, the cross-quantilogram is invariant to any

strictly monotonic transformation applied to both series, such as the logarithmic

transformation.

To construct the sample analogue of the cross-quantilogram based on observations

fx1; : : : ; xTg, we �rst estimate the unconditional quantile functions by solving the

following minimization problems, separately:

q̂1(�1) = argmin
v12R

TX
t=1

��1(x1t � v1) and q̂2(�2) = argmin
v22R

TX
t=1

��2(x2t � v2);

where �a(u) � u(a� 1[u < 0]). Then, the sample cross-quantilogram is de�ned as

�̂�(k) =

PT
t=k+1  �1(x1t � q̂1(�1)) �2(x2t�k � q̂2(�2))qPT

t=k+1  
2
�1
(x1t � q̂1(�1))

qPT
t=k+1  

2
�2
(x2t�k � q̂2(�2))

; (2)

for k = 0;�1;�2; : : : : Given a set of quantiles, the cross-quantilogram considers

dependency in terms of the direction of deviation from quantiles and thus measures the

directional predictability from one series to another. This can be a useful descriptive

device. By construction, �̂�(k) 2 [�1; 1] with �̂�(k) = 0 corresponding to the case of

no directional predictability. The form of the statistic generalizes to the d dimensional

multivariate case and the (i; j)th entry of the corresponding cross-correlation matrices

��(k) is given by applying (2) for a pair of variables (xit; xjt�k) and a pair of quantiles

(q̂i(�i); q̂j(�j))) for � = (�1; : : : ; �d)
|
. The cross-correlation matrices possess the

usual symmetry property ��(k) = ��(�k)
|
when �1 = � � � = �d:

We may be interested in testing for the absence of directional predictability over

a set of quantiles. Let A � A1 � A2, where Ai � (0; 1) is a quantile range for
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each time series fxi1; : : : ; xiTg (i = 1; 2). We are interested in testing the hypothesis

H0 : ��(1) = � � � = ��(p) = 0; 8� 2 A; against the alternative hypothesis that

��(k) 6= 0 for some k 2 f1; : : : ; pg and some � 2 A with p �xed.1 This is a test for

the directional predictability of events up to p lags fx2t�k � q2(�2) : k = 1; : : : ; pg for

x1t: To discriminate between these hypotheses we will use the test statistic

sup
�2A

Q̂(p)� = sup
�2A

T jj�̂(p)� jj2 = sup
�2A

T

pX
k=1

�̂2�(k);

where Q̂(p)� is the quantile speci�c Box-Pierce type statistic and �̂(p)� � [�̂�(1); : : : ; �̂�(p)]
|
:

To test the directional predictability in a speci�c quantile, or to provide con�dence

intervals for the population quantities, we use �̂�(k) or Q̂
(p)
� , which are special cases

of the sup-type test statistic. In practice, we have found that the Box-Ljung version

Q̂
(p)
� � T (T + 2)

Pp
k=1 �̂

2
�(k)=(T � k) yields some small sample improvements.

3 Asymptotic Properties

Here we present the asymptotic properties of the sample cross-quantilogram and re-

lated test statistics. Since these quantities contain non-smooth functions, we employ

techniques widely used in the literature on quantile regression, see Koenker and Bas-

sett (1978) and Pollard (1991) among others. We impose the following assumptions.

Assumption A1. fxt : t 2 Zg is a strictly stationary and strong mixing with

coe¢ cients f�(n)g that satisfy �(n) = O(n�a) for a > 1. A2. The distribution

functions Fi(�) for i = 1; 2 have continuous densities fi(�) uniformly bounded away

from 0 and 1 at qi(�i) uniformly over �i 2 Ai. A3. For any � > 0 there exists

1Hong (1996) established the properties of the Box-Pierce statistic in the case that p = pn !1 :
after a location and scale adjustment the statistic is asymptotically normal. No doubt our results
can be extended to accommodate this case, although in practice the desirability of such a test is
questionable, and our limit theory may provide better critical values for even quite long lags.
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a �(�) such that sup�2Ai sups:jsj��(�) jfi(qi(�)) � fi(qi(�) + s)j < � for i = 1; 2. A4.

The joint distribution Gk of (x1t; x2t�k) has a bounded, continuous �rst derivative

for each argument uniformly in the neighborhood of quantiles of interest for every

k 2 f1; : : : ; pg.

Assumption A1 imposes a mixing rate used in Rio (2000, Chapter 7). For a strong

mixing process, ��(k)! 0 as k !1 for all � 2 (0; 1): Assumption A2 ensures that

the quantile functions are uniquely de�ned. Assumption A3 implies that the densities

are smooth in some neighborhood of the quantiles of interest. Assumption A4 ensures

that the joint distribution of (x1t; x2t�k) is continuously di¤erentiable.

To describe the asymptotic behavior of the cross-quantilogram, we de�ne a set of

3-dimensional mean-zero Gaussian process fBk(�) : � 2 [0; 1]2gpk=1 with covariance-

matrix function given by

�kk0(�; �
0) � E[Bk(�)B

|
k0(�

0)] =
1X

l=�1

cov
�
�l(�; k); �

|
0(�

0; k0)
�
;

for k; k0 2 f1; : : : ; pg and for �; �0 2 A, where

�t(�; k) =
�
1[�1t(�1) � 0; �2t�k(�2) � 0]�Gk(q�);  �1(�1t(�1));  �2(�2t�k(�2))

�|
;

with �it(�) = xit�qi(�) for i = 1; 2 and for t = 1; : : : ; T . De�ne the 3p-dimensional zero-

mean Gaussian process B(p)(�) = [B1(�)
|
; : : : ;Bp(�)

|
]
|
with the covariance-matrix

function denoted by �(p)(�; �). The next theorem establishes the asymptotic proper-

ties of the cross-quantilogram.

Theorem 1 Suppose that Assumptions A1-A4 hold for some �nite integer p > 0:

Then, in the sense of weak convergence of the stochastic process we have:

p
T
�
�̂(p)� � �(p)�

�
) �(p)� B(p)(�); (3)

6



where �(p)� = diag(�
|
�1; : : : ; �

|
�p) and

��k =
1p

�1(1� �1)�2(1� �2)
diag

�
1;

1

f1(q1(�1))
;

1

f2(q2(�2))

�264 1

rGk(q�)

375 ; (4)
with the gradient vector rGk(�) of Gk(�).

Under the null hypothesis that ��(1) = � � � = ��(p) = 0 for every � 2 A , it

follows that

sup
�2A

Q̂(p)� =) sup
�2A

k�(p)� B(p)(�)k2 (5)

by the continuous mapping theorem.

3.1 Inference Methods

3.1.1 The Stationary Bootstrap

The asymptotic null distribution presented in Theorem 1 depends on nuisance para-

meters. To estimate the critical values from the limiting distribution we could use

nonparametric estimation, but that may su¤er from a slow convergence rate. We ad-

dress this issue by using the stationary bootstrap (SB) of Politis and Romano (1994).

The SB is a block bootstrap method with blocks of random lengths. The SB resample

is strictly stationary conditional on the original sample.

Let fLigi2N denote a sequence of block lengths, which are iid random variables

having the geometric distribution with a scalar parameter 
 � 
T 2 (0; 1):

P �(Li = l) = 
(1� 
)l�1; 8i 2 N;

for each positive integer l, where P � denotes the conditional expectation given the

original sample. We assume that the parameter 
 satis�es the following growth

condition
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Assumption A5. 
 + (
p
T
)�1 ! 0 as T !1.

Let fKigi2N be iid random variables, which are independent of both the original

data and fLigi2N, and have the discrete uniform distribution on fk + 1; : : : ; Tg. We

set BKi;Li = f(x1t; x2t�k)gLi�1t=Ki
representing the block of length Li starting with the

Ki-th pair of observations. The SB procedure generate samples f(x�1t; x�2t�k)gTt=k+1
by taking the �rst (T � k) observations from a sequence of the resampled blocks

fBKi;Ligi2N. In this notation, when t > T , (x1t; x2t�k) is set to be (x1j; x2j�k), where

j = k+(t mod (T �k)) and (x1k; x20) = (x1T ; x2T+k), where mod denotes the modulo

operator.2

Using the SB resample, we obtain quantile estimates q̂�� = (q̂�1(�1); q̂
�
2(�2))

|
for

q� = (q1(�1); q2(�2))
|
by solving the minimization problems:

q̂�1(�1) = argmin
v12R

TX
t=k+1

��1(x
�
1t � v1) and q̂�2(�2) = argmin

v22R

TX
t=k+1

��2(x
�
2t�k � v2):

We construct q̂�� by using (T�k) SB observations, while q̂� is based on T observations.

The di¤erence of sample sizes is asymptotically negligible given the �nite lag order k.

The cross-quantilogram based on the SB resample is de�ned as follows:

�̂��(k) =

PT
t=k+1  �1(x

�
1t � q̂�1(�1)) �2(x

�
2t�k � q̂�2(�2))qPT

t=k+1  
2
�1
(x�1t � q̂�1(�1))

qPT
t=k+1  

2
�2
(x�2t�k � q̂�2(�2))

:

We consider the SB bootstrap to construct a con�dence intervals for each statistic

of p cross-quantilograms f�̂�(1); : : : ; �̂�(p)g for a �nite positive integer p and subse-

quently construct a con�dence interval for the omnibus test based on the p statistics.

To maintain possible dependence structures, we use (T � p) pairs of observations

f(xt�1; : : : ; xt�p)gTt=p+1 to resample the blocks of random lengths.

Given a vector cross-quantilogram �̂(p)�� , we de�ne the omnibus test based on the

2For any positive integers a and b, the modulo operation a mod b is equal to the remainder, on
division of a by b.
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SB resample as Q̂(p)�� = T (�̂(p)�� � �̂(p)� )
|
(�̂(p)�� � �̂(p)� ). The following lemma shows the

validity of the SB procedure for the cross-quantilogram.

Theorem 2 Suppose that Assumption A1-A5 hold. Then, in the sense of weak con-

vergence conditional on the sample we have:

(a)
p
T
�
�̂(p)�� � �̂(p)�

�
=)� �

(p)
� B(p)(�) in probability;

(b) Under the null hypothesis that ��(1) = � � � = ��(p) = 0 for every � 2 A,

sup
z2R

����P ��sup
�2A

Q̂(p)�� � z

�
� P

�
sup
�2A

Q̂(p)� � z

�����!p 0:

In practice, repeating the SB procedure B times, we obtain B sets of cross-

quantilograms and f�̂(p)��;b = [�̂��;b(1); : : : ; �̂
�
�;b(p)]

|gBb=1 and B sets of omnibus tests

fQ̂(p)��;b gBb=1 with Q̂
(p)�
�;b = T (�̂

(p)�
�;b � �̂

(p)
� )

|
(�̂
(p)�
�;b � �̂

(p)
� ). For testing jointly the null of no

directional predictability, a critical value, c�Q;� , corresponding to a signi�cance level �

is give by the (1� �)100% percentile of B test statistics fsup�2A Q̂
(p)�
�;b gBb=1, that is,

c�Q;� = inf

�
c : P �

�
sup
�2A

Q̂
(p)�
�;b � c

�
� 1� �

�
:

For the individual cross-quantilogram, we pick up percentiles (c�1k;� ; c
�
2k;� ) of the boot-

strap distribution of f
p
T (�̂��;b(k) � �̂�(k))gBb=1 such that P �(c�1k �

p
T (�̂��;b(k) �

�̂�(k)) � c�2k) = 1� � , in order to obtain a 100(1� �)% con�dence interval for ��(k)

given by [�̂�(k)� T�1=2c�1k;� ; �̂�(k) + T�1=2c�2k;� ]:

In the following theorem, we provide a power analysis of the omnibus test statistic

sup�2A Q̂
(p)
� when we use a critical value c�Q;� . That is, we examine the power of the

omnibus test by using P (sup�2A Q̂
(p)
� > c�Q;� ). We consider �xed and local alternatives.

The �xed alternative hypothesis against the null of no directional predictability is

H1 : ��(k) is nonzero constant for some � 2 A and for some k 2 f1; : : : ; pg; (6)
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and the local alternative

H1T : ��(k) = �=
p
T ; for some � 2 A and for some k 2 f1; : : : ; pg; (7)

where � is a �nite non-zero scalar. Thus, under the local alternative, there exist

a p-dimensional vector �(p)� such that �(p)� = T�1=2�(p)� with �(p)� having at least one

non-zero element for some � 2 A.

While we consider the asymptotic power of test for the directional predictability

over a range of quantiles with multiple lags in the following theorem, the results

can be applied to test for a speci�c quantile or a speci�c lag order. The following

theorem shows that the cross-quantilogram process has non-trivial local power against
p
T -local alternatives.

Theorem 3 Suppose that Assumptions A1-A5 hold. Then: (a) Under the �xed al-

ternative in (6),

lim
T!1

P

�
sup
�2A

Q̂(p)� > c�Q;�

�
! 1:

(b) Under the local alternative in (7)

lim
T!1

P

�
sup
�2A

Q̂(p)� > c�Q;�

�
= P

�
sup
�2A

k�(p)� B(p)(�) + �(p)� k2 � cQ;�

�
;

where cQ;� = inffc : P (sup�2A k�
(p)
� B(p)(�)k2 � c)) � 1� �g.

3.1.2 The Self-Normalized Cross-Quantilogram

The self-normalized approach was proposed in Lobato (2001) for testing the absence

of autocorrelation of a time series that is not necessarily independent. The idea was

recently extended by Shao (2010) to a class of asymptotically linear test statistics.

Kuan and Lee (2006) apply the approach to a class of speci�cation tests, the so-called

M tests, which are based on the moment conditions involving unknown parameters.

10



Chen and Qu (2012) propose a procedure for improving the power of the M test, by

dividing the original sample into subsamples before applying the self-normalization

procedure. The self-normalized approach has a tight link with the �xed-b asymptotic

framework, which was proposed by Kiefer et al. (2000) and has been studied by

Bunzel et al. (2001), Kiefer and Vogelsang (2002, 2005), Sun et al. (2008), Kim and

Sun (2011) and Sun and Kim (2012) among others. As discussed in section 2.1 of

Shao (2010), the self-normalized and the �xed-b approach have better size properties,

compared with the standard approach involving a consistent asymptotic variance

estimator, while it may be asymptotically less powerful under local alternatives (see

Lobato (2001) and Sun et al. (2008) for instance). The relation between size and

power properties is consistent with simulation results reported in the cited papers

above.

We use recursive estimates to construct a self-normalized cross-quantilogram.

Given a subsample fxtgst=1, we can estimate sample quantile functions by solving

minimization problems

q̂1s(�1) = argmin
v12R

sX
t=1

��1(x1t � v1) and q̂2s(�2) = argmin
v22R

sX
t=1

��2(x2t � v2):

We consider the minimum subsample size s larger than [T!], where ! 2 (0; 1) is an

arbitrary small positive constant. The trimming parameter, !, is necessary to guar-

antee that the quantiles estimators based on subsamples have standard asymptotic

properties and plays a di¤erent role to that of smoothing parameters in long-run vari-

ance estimators. Our simulation study suggests that the performance of the test is

not sensitive to the trimming parameters.

A key ingredient of the self-normalized statistic is an estimate of cross-correlation
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based on subsamples:

�̂�;s(k) =

Ps
t=k+1  �1(x1t � q̂1s(�1)) �2(x2t�k � q̂2s(�2))qPs

t=k+1  
2
�1
(x1t � q̂1s(�1))

qPs
t=k+1  

2
�2
(x2t�k � q̂2s(�2))

;

for [T!] � s � T . For a �nite integer p > 0, let �̂(p)�;s = [�̂�;s(1); : : : ; �̂�;s(p)]
|
. We

construct an outer product of the cross-quantilogram using the subsample

Â�p = T�2
TX

s=[T!]

s2
�
�̂(p)�;s � �̂(p)�

��
�̂(p)�;s � �̂(p)�

�|
:

We can obtain the asymptotically pivotal distribution using Â�p as the asymptotically

random normalization. For testing the null of no directional predictability, we de�ne

the self-normalized omnibus test statistic

Ŝ(p)� = T �̂(p)
|

� Â�1�p �̂
(p)
� :

The following theorem shows that Ŝ(p)� is asymptotically pivotal. To distinguish the

process used in the following theorem from the one used in the previous section, let

f�B(p)(�)g denote a 3p-dimensional, standard Brownian motion on D3p([0; 1]).

Theorem 4 Suppose that Assumptions A1-A4 hold. Then, for each � 2 A,

Ŝ(p)� =) �B(p)(1)|A�1(p)�B
(p)(1);

where Ap =
R 1
!

�
�B(p)(r)� r�B(p)(1)

	�
�B(p)(r)� r�B(p)(1)

	|
dr.

The joint test based on �nite multiple quantiles can be constructed in a similar

manner, while the test based on a range of quantiles has a limiting distribution

depending on the Kiefer process: this may be di¢ cult to implement in practice.

The asymptotic null distribution in the above theorem can be simulated and a

critical value, cS;� , corresponding to a signi�cance level � is tabulated by using the

12



(1 � �)100% percentile of the simulated distribution.3 In the theorem below, we

consider a power function of the self-normalized omnibus test statistic, P (Ŝ(p)� > cS;� ).

For a �xed � 2 A, we consider a �xed alternative

H1 : ��(k) is nonzero constant for some k 2 f1; : : : ; pg; (8)

and a local alternative

H1T : ��(k) = �=
p
T ; and for some k 2 f1; : : : ; pg; (9)

where � is a �nite non-zero scalar. This implies that there exist a p-dimensional vector

�(p)� such that �(p)� = T�1=2�(p)� with �(p)� having at least one non-zero element.

Theorem 5 (a) Suppose that the �xed alternative in (8) and Assumptions A1-A4

hold. Then,

lim
T!1

P
�
Ŝ(p)� > cS;�

�
! 1:

(b) Suppose that the local alternative in (9) is true and Assumptions A1-A4 hold.

Then,

lim
T!1

P
�
Ŝ(p)� > cS;�

�
= P

�n
�B(p)(1) + (�(p)� �(p)

� )
�1�(p)�

o|

A�1p
n
�B(p)(1) + (�(p)� �(p)

� )
�1�(p)�

o
� cS;�

�
;

where �(p)
� is a 3p� 3p matrix with �(p)

� (�
(p)
� )

| � �p(�; �).

4 The Partial Cross-Quantilogram

We de�ne the partial cross-quantilogram, which measures the relationship between

two events fx1t � q1(�1)g and fx2t�k � q2(�2)g, while controlling for intermediate

events between t and t � k as well as whether some state variables exceed a given

3We provide the simulated critical values in our R package.
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quantile. Let zt � (z1t; : : : ; zlt)
|
be an l-dimensional vector for l � 1, which may

include some of the lagged predicted variables fx1t�1; : : : ; x1t�kg, the intermediate

predictors fx2t�1; : : : ; x1t�k�1g and some state variables that may re�ect some histor-

ical events up to t. We use qzi(�i) to denote the �ith quantile of zi given �i 2 (0; 1)

for i = 1; : : : ; l and de�ne qz;� = (qz1(�1); : : : ; qzl(�l))
|
, with � = (�1; : : : ; �l)

|
. To

ease the notational burden in the rest of this section, we suppress the dependency of

qzi(�i) on �i for i = 1; : : : ; l and use qz � qz;� and qzi � qzi(�i). We present results

for the single quantile � and a single lag k, although the results can be extended to

the case of a range of quantiles and multiple lags.

We introduce the correlation matrix of the hit processes and its inverse matrix

R�k = E
�
ht;�kh

|
t;�k

�
and P�k = R�1�k ;

where ht;�k = [ �1(�1t(�1));  �2(�2t�k(�2));	�(zt�qz)
|
]
|
with	�(u) = [ �1(u1); : : : ;  �l(ul)]

|

for u = (u1; : : : ; ul)
| 2 Rl. For i; j 2 f1; : : : ; lg, let r�k;ij and p�k;ij be the (i; j) el-

ement of R�k and P�k, respectively. Notice that the cross-quantilogram is ��(k) =

r�k;12=
p
r�k;11r�k;22; and the partial cross-quantilogram is de�ned as

��jz(k) = �
p�k;12p

p�k;11p�k;22
:

To obtain the sample analogue of the partial cross-quantilogram, we �rst construct

a vector of hit processes, ĥt;�k, by replacing the population quantiles in ht;�k by the

sample analogues (q̂1(�1); q̂2(�2); q̂z1 ; : : : ; q̂zl). Then, we obtain the estimator for the

correlation matrix and its inverse as

R̂�k =
1

T

TX
t=k+1

ĥt;�kĥ
|
t;�k and P̂�k = R̂�1�k ;

14



which leads to the sample analogue of the partial cross-quantilogram

�̂�jz(k) = �
p̂�k;12p

p̂�k;11p̂�k;22
; (10)

where p̂�k;ij denotes the (i; j) element of P̂�k for i; j 2 f1; : : : ; lg.

In Theorem 6 below, we show that �̂�jz(k) asymptotically follows the normal distri-

bution, while the asymptotic variance depends on nuisance parameters as in the previ-

ous section. To address the issue of the nuisance parameters, we employ the stationary

bootstrap or the self-normalization technique. For the bootstrap, we can use pairs of

variables f(x1t; x2t�k; zt)gTt=k+1 to generate the SB resample f(x�1t; x�2t�k; z�t )gTt=k+1 and

we then obtain the SB version of the partial cross-quantilogram, denoted by �̂��jz(k),

using the formula in (10). When we use the self-normalized test statistics, we estimate

the partial cross-quantilogram ��;sjz(k) based on the subsample up to s, recursively

and then we use

Â�jz = T�2
TX

s=[T!]

s2
�
�̂�;sjz � �̂�;T jz

�2
;

to normalize the cross-quantilogram, thereby obtaining the asymptotically pivotal

statistics.

To obtain the asymptotic results, we impose the following conditions on the dis-

tribution function Fzi(�) and the density function Fzi(�) of each controlling variable

zi for i = 1; : : : ; l.

Assumption A6. For every i 2 f1; : : : ; lg: (a) fzitgt2Z is strictly stationary

and strong mixing as assumed in Assumption A1; (b) The conditions in Assumption

A2 and A3 hold for the Fzi(�) and fzi(�) at the relevant quantile; (c) G2zi(v1; v2) �

P (x2t � v2; zit � v3) for (v1; v2) 2 R2 is continuously di¤erentiable.

Assumption A6(a) requires the control variables zt to satisfy the same weak de-

pendent property as x1t and x2t. Assumption A6(b)-(c) ensure the smoothness of the
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distribution, density function and the joint distribution of x2t and zit.

De�ne the covariance matrix

�k;z(�) =

1X
l=�1

cov
�
~�l(�; k);

~�
|

0(�; k)
�
;

where ~�t(�; k) = [~�1t(�; k)
|
; ~�2t(�; k)

|
]
|
with

~�1t(�; k) =

264  �1(�1t(�1)) �2(�2t�k(�2))

 �2(�2t�k(�2))	�(zt � qz)

375 and ~�2t(�; k) =

266664
 �1(�1t(�1))

 �2(�2t�k(�2))

	�(zt � qz)

377775
|

:

Also, let ��k;z = (p�k;11p�k;22)�1=2(�
(1)|

�k;z�
(2)|

�k;z)
|
; where

�
(1)
�k;z =

264 1

��|z1��1z

375 and �
(2)
�k;z = �

�1
f

0BBBB@
264 rGk(q�)

0l

375�
266664

0

�
|
1z�

�1
z @G2z(v; qz)=@vjv=q2(�2)

�
|
1z�

�1
z @G2z(q2(�2); w)=@w

0jw=qz

377775
1CCCCA ;

with �f = diagff1(q1(�1)); f2(q2(�2)); fz1(qz1); : : : ; fzl(qzl)g, 0l = (0; : : : ; 0)
| 2 Rl,

�1z = E[ �1(�1t(�1))	�(zt�qz)], �2z = E[ �2(�2t�k(�2))	�(zt�qz)], �z = E[	�(zt�

qz)	�(zt�qz)
|
] andG2z(v; w) = [G2z1(v; w1); : : : ; G2zl(v; wl)]

|
for (v; w) 2 R�Rl with

w = (w1; : : : ; wl)
|
.

We now state the asymptotic properties of the partial cross-quantilogram and the

related inference methods.

Theorem 6 (a) Suppose that Assumption A1-A4 and A6 hold. Then,

p
T (�̂�jz(k)� ��jz(k))!d N(0; �2�jz);

for each � 2 A and for a �nite positive integer k, where �2�jz = �
|
�k;z�k;z(�)��k;z.
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(b) Suppose that Assumption A1-A6 hold. Then,

sup
s2R

��P � ��̂��jz(k) � s
�
� P

�
�̂�jz(k) � s

���!p 0;

for each � 2 A and for a �nite positive integer k.

(c) Suppose that Assumption A1-A4 and A6 hold. Then, under the null hypothesis

that ��jz(k) = 0, we have

p
T �̂�jz(k)

Â
1=2
�jz

!d B(1)nR 1
!
fB(1)� rB(r)g2dr

o1=2 ;
for each � 2 A and for a �nite positive integer k.

We can show that the partial cross-quantilogram has non-trivial local power

against
p
T -local alternatives, applying the similar arguments used in Theorem 3

and Theorem 5, and thus we omit the details.

5 Monte Carlo Simulation

We investigate the �nite sample performance of our test statistics in the following

two data generating processes:

DGP1: (x1t; x2t)
|
� iid N (0; I2) where I2 is a 2� 2 identity matrix.

DGP2: 0B@ x1t

x2t

1CA =

0B@ �1t 0

0 1

1CA
0B@ "1t

"2t

1CA
where ("1t; "2t)

|
� iid N (0; I2) and �21t = 0:1 + 0:2x

2
1t�1 + 0:2�

2
1t�1 + x22t�1:

Under DGP1, there is no predictability from x2t�k to x1t for all quantiles:4 Under

DGP2, (x1t) is de�ned as the GARCH-X process, where its conditional variance is the

4Even when we allow for moderate dependence in the DGP1 such as AR processes, we obtain
similar results and the results are available upon request.
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GARCH(1,1) process with an exogenous covariate. The GARCH-X process is com-

monly used for modeling volatility of economic or �nancial time series in the literature

(see Han (2013) and references therein). Under DGP2, there is no predictability for

the median because x1t is symmetrically distributed but, for other quantiles, there

exists predictability from x2t�k to x1t for k � 1 through �21t:

5.1 Results Based on the Bootstrap Procedure

We �rst examine the �nite-sample performance of the Box-Ljung test statistics based

on the stationary bootstrap procedure. To save space, only the results for the

case where �1 = �2 are reported here because the results for cases where �1 6=

�2 are similar. The Box-Ljung test statistics Q̂(p)� are based on �̂�(k) for �1 =

0:05; 0:1; 0:2; 0:3; 0:5; 0:7; 0:8; 0:9,0:95 and k = 1; 2; : : : ; 5. Tables 1 and 2 report the

empirical rejection frequency of the Box-Ljung test statistics based on bootstrap crit-

ical values at the 5% level. We chose sample sizes T = 500; 1; 000 and 2; 000: We

computed ns = 1; 000 replications. The bootstrap critical values are based on 1; 000

bootstrapped replicates. The tuning parameter 1=
 is chosen by adapting the rule

suggested by Politis and White (2004) (and later corrected in Patton et al. (2009)).

Since it is for univariate data, we apply it separately to each time series and de�ne 


as the average value.

In general, our simulation results in Tables 1 and 2 show that the test has relatively

good size and power properties. Table 1 reports the simulation results for the DGP1,

which show the size performance. The rejection frequencies are mostly close to 0:05:

Except for �1 = 0:05 and 0:95 cases, the rejection frequency is uniformly within

simulation error of the nominal value. For all quantiles including �1 = 0:05 and 0:95

cases, the rejection frequency becomes closer to 0:05 as sample size increases.
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Table 1. (size) Empirical rejection frequency of the Box-Ljung test statistic Q̂(p)�
(DGP1 and the nominal level: 5%)

Quantiles (�1 = �2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95
500 1 0.147 0.064 0.025 0.039 0.047 0.042 0.050 0.040 0.163

2 0.020 0.020 0.026 0.035 0.026 0.034 0.039 0.024 0.039
3 0.007 0.012 0.024 0.025 0.024 0.029 0.035 0.017 0.015
4 0.006 0.008 0.019 0.026 0.017 0.029 0.028 0.010 0.004
5 0.003 0.007 0.021 0.026 0.023 0.029 0.024 0.010 0.006

1000 1 0.071 0.050 0.039 0.044 0.042 0.040 0.044 0.034 0.078
2 0.022 0.032 0.031 0.039 0.028 0.031 0.034 0.030 0.032
3 0.018 0.028 0.027 0.039 0.030 0.023 0.035 0.017 0.022
4 0.011 0.025 0.035 0.034 0.035 0.026 0.029 0.015 0.011
5 0.014 0.020 0.018 0.031 0.031 0.026 0.024 0.016 0.007

2000 1 0.077 0.051 0.038 0.045 0.050 0.049 0.040 0.044 0.073
2 0.036 0.026 0.036 0.036 0.043 0.037 0.036 0.024 0.034
3 0.024 0.026 0.038 0.046 0.038 0.041 0.034 0.020 0.024
4 0.015 0.035 0.042 0.038 0.041 0.042 0.030 0.015 0.020
5 0.017 0.034 0.040 0.039 0.049 0.043 0.030 0.021 0.011

Notes: The �rst and second columns report the sample size T and the number of lags p for
the Box-Ljung test statistics Q̂(p)� . The rest of columns show empirical rejection frequencies
based on bootstrap critical values at the 5% signi�cance level. The tuning parameter 
 is
chosen as explained above.

Table 2 reports the simulation results for the DGP2. As explained above, the null

hypothesis of no predictability is satis�ed at the median under the DGP2 and the

rejection frequency is close to 0:05 at the median and moreover power is lower when

quantile is closer to median in Table 2. However, for other quantiles, the rejection

frequency approaches one in the largest sample size.

5.2 Results for the Self-Normalized Statistics

We also examine the performance of the self-normalized version of Q̂(p)� under the

same setup as above. We let the trimming value ! be 0.1. We also considered 0.03

and 0.05 for ! and the results are similar to those for ! = 0:1:We provide the results
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Table 2. (power) Empirical rejection frequency of the Box-Ljung test statistic Q̂(p)�
(DGP2: GARCH-X process)

Quantiles (�1 = �2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95
500 1 0.197 0.409 0.373 0.161 0.042 0.179 0.412 0.450 0.191

2 0.223 0.403 0.377 0.134 0.037 0.149 0.389 0.446 0.213
3 0.188 0.366 0.317 0.110 0.032 0.122 0.340 0.407 0.195
4 0.166 0.323 0.276 0.098 0.030 0.100 0.290 0.370 0.168
5 0.149 0.284 0.242 0.088 0.030 0.089 0.257 0.334 0.153

1000 1 0.555 0.813 0.739 0.347 0.040 0.337 0.765 0.817 0.590
2 0.565 0.814 0.708 0.295 0.043 0.295 0.749 0.819 0.582
3 0.531 0.779 0.665 0.254 0.035 0.251 0.693 0.780 0.553
4 0.501 0.741 0.629 0.217 0.040 0.216 0.637 0.747 0.512
5 0.463 0.702 0.579 0.194 0.034 0.181 0.594 0.725 0.485

2000 1 0.914 0.992 0.964 0.634 0.039 0.617 0.977 0.983 0.923
2 0.932 0.989 0.968 0.591 0.038 0.583 0.978 0.987 0.923
3 0.917 0.989 0.961 0.530 0.034 0.527 0.959 0.988 0.920
4 0.909 0.983 0.952 0.492 0.040 0.472 0.946 0.987 0.909
5 0.900 0.980 0.936 0.448 0.037 0.435 0.935 0.980 0.888

Notes: Same as Table 1.

for ! = 0:05 in the supplementary material. The number of repetitions is 3; 000. The

empirical sizes of the test are reported in Table 3, where the underlying process is

DGP1 and the nominal size is 5%. The rejection frequencies for quantiles between 0.1

and 0.9 are close to 5% nominal level or a little conservative regardless of sample sizes.

At 0.05 and 0.95 quantiles, the result shows size distortions for T = 500, but this

becomes moderate for T = 1000 and empirical sizes become close to the nominal size

for T = 2000. Using the GARCH-X process as in DGP2, we obtain empirical powers

and present the result in Table 4. With a one-period lag (p = 1), the self-normalized

quantilogram at �1; �2 2 f0:1; 0:2; 0:8; 0:9g rejects the null by about 25.7-26.6%, 51.1-

56.2% and 78.9-84.8% for sample sizes 500, 1,000 and 2,000, respectively. In general,

the rejection frequencies increase as the sample size increases, decline as the maximum

number of lags p increases, and is not sensitive to the choice of the trimming value.
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Our results show that the self-normalized statistics have lower power in �nite samples

compared with the stationary bootstrap.

6 Empirical Studies

6.1 Stock Return Predictability

We apply the cross-quantilogram to detect directional predictability from an economic

state variable to stock returns. The issue of stock return predictability has been very

important and extensively investigated in the literature, see Lettau and Ludvigson

(2010) for an extensive review. A large literature has considered predictability of the

mean of stock return. The typical mean return forecast examines whether the mean

Table 3. (size) Empirical Rejection Frequencies of the Self-Normalized Statistics
(DGP1 and the nominal level: 5%)

Quantiles (�1 = �2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95
500 1 0.176 0.038 0.032 0.030 0.027 0.028 0.026 0.034 0.196

2 0.285 0.029 0.022 0.022 0.023 0.021 0.019 0.026 0.347
3 0.391 0.031 0.020 0.017 0.019 0.015 0.017 0.031 0.459
4 0.475 0.026 0.011 0.010 0.013 0.009 0.012 0.028 0.560
5 0.539 0.032 0.008 0.007 0.007 0.008 0.008 0.035 0.643

1000 1 0.051 0.033 0.039 0.037 0.035 0.034 0.033 0.037 0.061
2 0.095 0.027 0.029 0.024 0.026 0.026 0.028 0.027 0.102
3 0.126 0.026 0.022 0.019 0.023 0.020 0.022 0.028 0.146
4 0.162 0.021 0.015 0.012 0.015 0.017 0.016 0.020 0.182
5 0.194 0.019 0.011 0.014 0.009 0.012 0.013 0.021 0.211

2000 1 0.042 0.037 0.040 0.040 0.041 0.045 0.036 0.035 0.053
2 0.044 0.033 0.028 0.032 0.031 0.038 0.030 0.029 0.051
3 0.048 0.026 0.020 0.030 0.030 0.028 0.025 0.025 0.052
4 0.052 0.024 0.017 0.018 0.020 0.019 0.021 0.020 0.055
5 0.055 0.022 0.018 0.019 0.019 0.016 0.016 0.018 0.054

Notes: The �rst and second columns report the sample size T and the number of lags p
for the test statistics Q̂p�. The rest of columns show empirical rejection frequencies given
simulated critical values at 5% signi�cance level. The trimming value ! is set to be 0.1.
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Table 4. (power) Empirical Rejection Frequencies of the Self-Normalized Statistics
(DGP2: GARCH-X process)

Quantiles (�1 = �2)
T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95
500 1 0.134 0.259 0.266 0.110 0.031 0.121 0.263 0.257 0.105

2 0.104 0.169 0.173 0.067 0.023 0.073 0.182 0.161 0.084
3 0.149 0.109 0.111 0.042 0.015 0.049 0.118 0.095 0.159
4 0.232 0.077 0.069 0.033 0.012 0.031 0.083 0.061 0.282
5 0.328 0.059 0.051 0.020 0.008 0.020 0.060 0.050 0.402

1000 1 0.359 0.555 0.523 0.231 0.038 0.231 0.511 0.547 0.338
2 0.232 0.449 0.417 0.164 0.025 0.176 0.420 0.449 0.214
3 0.158 0.352 0.319 0.110 0.020 0.128 0.335 0.336 0.157
4 0.136 0.269 0.241 0.086 0.018 0.093 0.253 0.256 0.141
5 0.152 0.211 0.198 0.064 0.012 0.062 0.194 0.200 0.146

2000 1 0.677 0.842 0.789 0.443 0.044 0.445 0.804 0.842 0.660
2 0.561 0.778 0.729 0.355 0.034 0.369 0.746 0.784 0.537
3 0.451 0.700 0.661 0.279 0.025 0.292 0.660 0.700 0.438
4 0.366 0.637 0.580 0.214 0.019 0.236 0.604 0.628 0.351
5 0.305 0.580 0.525 0.183 0.014 0.191 0.547 0.559 0.282

Notes: Same as Table 3.

of an economic state variable is helpful in predicting the mean of stock return (mean-

to-mean relationship). Recently, Cenesizoglu and Timmermann (2008) considered

whether the mean of an economic state variable is helpful in predicting di¤erent

quantiles of stock returns representing left tail, right tail or shoulders of the return

distribution. They show that while the OLS estimates of regression coe¢ cients for

the mean return forecast are mostly insigni�cant even at the 10% level (see Table 2),

the mean of some predictors is helpful in predicting certain quantiles of stock returns

(see Table 3). Speci�cally, they considered the following linear quantile regression

q�(rt+1jFt) = �0;� + �1;�xt + �2;�q�(rtjFt�1) + �3;� jrtj ;

where rt and xt are stock returns and an economic state variable, respectively, and

q�(rt+1jFt) is the conditional quantile of stock return given the information Ft at
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time t. They include q�(rtjFt�1) and jrtj in the model following Engle and Manganelli

(2004). Maynard et al. (2011) investigate inferences in such linear quantile regressions

when a predictive regressor has a near-unit root.

Our cross-quantilogram adds one more dimension to analyze predictability com-

pared with the linear quantile regression, and so it shows a more complete relation-

ship between a predictor and stock returns. Moreover, as pointed out by Linton and

Whang (2007), we can consider very large lags in the framework of the quantilogram.

For example, in our application, We consider lags k = 60, i.e. 5 years.

We use the data set of monthly stock returns and the predictor variables previ-

ously analyzed in Goyal and Welch (2008). Stock returns are measured by the S&P

500 index and include dividends. A Treasury-bill rate is subtracted from stock re-

turns to give excess returns. There are a total of 16 variables considered as predictors

in Goyal and Welch (2008). However, most time series used as predictors are highly

persistent. For example, both the dividend-price ratio and the earnings-price ratio

have autoregressive coe¢ cients being estimated to be 0:99; and unit root tests show

that there exists a near-unit root in each time series. This motivated the work by

Maynard et al. (2011). Since our paper establishes asymptotic and bootstrap theo-

ries for the cross-quantilogram for strictly stationary time series, we do not consider

these variables. Extension of the quantilogram for such persistent time series will be

interesting and useful. We leave it as future work.

In our application, we consider stock variance as the predictor because the au-

toregressive coe¢ cient for stock variance is estimated to be 0:59 and the unit root

hypothesis is clearly rejected. The stock variance is a volatility estimate based on

daily squared returns and is treated as an estimate of equity risk in the literature.

The risk-return relationship is a very important issue in the literature. See Lettau

and Ludvigson (2010) for an extensive review. The cross-quantilogram can provide
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quantile-to-quantile relationship from risk to return, which cannot be examined using

existing methods. The sample period is from Feb. 1885 to Dec. 2005 with sample

size 1,451. The sample mean and median of stock return are 0:0008 and 0:0032;

respectively:

In Figures 1(a)-3(b), we provide the cross-quantilogram �̂�(k) and the portman-

teau tests Q̂(p)� (we use the Box-Ljung versions throughout) to detect directional pre-

dictability from stock variance, representing risk, to stock return. For the quantiles of

stock return q1(�1), we consider a wide range for �1 = 0:05; 0:1; 0:2; 0:3; 0:5; 0:7; 0:8; 0:9

and 0:95. For the quantiles of stock variance q2(�2), we consider �2 = 0:1, 0:5 and

0:9: The tuning parameter 
 is chosen as explained in Section 5.1. In each graph,

we show the 95% bootstrap con�dence intervals for no predictability based on 1; 000

bootstrapped replicates.

Figures 1(a) and 1(b) are for the case when the stock variance is in the lower

quantile, i.e. q2(�2) for �2 = 0:1. The cross-quantilogram �̂�(k) for �1 = 0:05 is

negative and signi�cant for some lags. It means that when risk is very low, it is less

likely to have a very large negative loss. The cross-quantilograms �̂�(k) for �1 = 0:8,

0:9 and 0:95 are positive and signi�cant for some lags. For example, for �1 = 0:95;

the cross-quantilogram is signi�cantly positive for about a half year. This means that

when risk is very low, it is less likely to have a very large positive gain for the next

half year. Figure 1(b) shows that the Box-Ljung test statistics are signi�cant for

quantiles �1 = 0:05; 0:8, 0:9 and 0:95:

Figures 2(a) and 2(b) are for the case when the stock variance is in the median,

i.e. q2(�2) for �2 = 0:5. If the distributions of stock returns and the predictor are

symmetric, the median return forecast will be equal to the mean return forecast. In

the case of �1 = 0:5 and �2 = 0:5, the cross-quantilograms are insigni�cant for almost

all lags. This result corresponds to the mean return forecast result given in Table 2
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Figure 1(a). The sample cross quantilogram �̂�(k) for �2= 0:1 to detect directional pre-
dictability from stock variance to stock return. Bar graphs describe sample cross-quantilograms
and lines are the 95% bootstrap con�dence intervals.
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Figure 1(b). Box-Ljung test statistic Q̂(p)� for each lag p and quantile � using �̂�(k) with
�2= 0:1. The dashed lines are the 95% bootstrap con�dence intervals.
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Figure 2(a). The sample cross quantilogram �̂�(k) for �2= 0:5 to detect directional pre-
dictability from stock variance to stock return. Same as Figure 1(a)..
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Figure 2(b). Box-Ljung test statistic Q̂(p)� for each lag p and quantile � using �̂�(k) with
�2= 0:5. Same as Figure 1(b).
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Figure 3(a). The sample cross quantilogram �̂�(k) for �2= 0:9 to detect directional pre-
dictability from stock variance to stock return. Same as Figure 1(a).
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Figure 3(b). Box-Ljung test statistic Q̂(p)� for each lag p and quantile � using �̂�(k) with
�2= 0:9. Same as Figure 1(b).
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by Cenesizoglu and Timmermann (2008), where the OLS estimate for the mean return

forecast is also insigni�cant. However, if we consider other quantiles of stock returns,

the stock variance appears to have some predictability for stock returns. It should be

noted that the results of the linear quantile regression given in Table 3 by Cenesizoglu

and Timmermann (2008) correspond to our results for the �rst lag in Figure 2(a):

For �1 = 0:05, 0:1 and 0:2; the cross-quantilograms are negative and signi�cant

for some lags. This implies that when risk is lower than the median, it is less likely

to have large negative losses. For �1 = 0:8, 0:9 and 0:95; the cross-quantilograms

are positive and signi�cant for some lags. For example, for �1 = 0:95; the cross-

quantilogram is signi�cantly positive for about one and a half years. This means that

when risk is lower than median, it is less likely to have a very large positive gain for

the next one and a half years. Figure 2(b) shows that the Box-Ljung test statistics

are signi�cant for both tails and both shoulders of the stock return distribution.

Figures 3(a) and 3(b) are for the case when stock variance is in the higher quantile,

i.e. q2(�2) for �2 = 0:9. Compared to the previous case of �2 = 0:5; the cross

quantilograms have similar trends but larger absolute values. For �1 = 0:05; the

cross-quantilograms are negative and signi�cant for about two years. This implies

that when risk is higher than the 0:9 quantile, there is an increased likelihood of having

very large negative losses up to two years. For �1 = 0:95; the cross quantilograms

are positive and signi�cant for about three years. This implies that when risk is very

high (higher than the 0:9 quantile), there is an increased likelihood of having a very

large positive gain for the next three years. Figure 3(b) shows that the Box-Ljung

test statistics are signi�cant for some lags in most quantiles of stock returns except

for �1 = 0:5.

The results in Figures 1(a)-3(b) show that stock variance is helpful in predicting

stock return and detailed features depend on each quantile of stock variance and stock
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return. Stock variance is helpful in predicting particularly both tails and both shoul-

ders of stock return distribution. When stock variance is in higher quantile, in general

the absolute value of the cross-quantilogram is higher and the cross-quantilogram is

signi�cantly di¤erent from zero for larger lags. Our results exhibit a more complete

quantile-to-quantile relationship between risk and return and additionally show how

the relationship changes for di¤erent lags.

6.2 Systemic Risk

The Great Recession of 2007-2009 has motivated researchers to better understand

systemic risk� the risk that the intermediation capacity of the entire �nancial system

can be impaired, with potentially adverse consequences for the supply of credit to the

real economy. Bisias et al. (2012) summarized that the current approaches to measure

systemic risk can be categorized as 1) tail measures, 2) contingent claims analysis,

3) network models and 4) dynamic stochastic macroeconomic models. Among these,

the �rst approach is related to the cross-quantilogram and it measures co-dependence

in the tails of equity returns of an individual �nancial institution and the �nancial

system. Prominent examples include the work of Adrian and Brunnermeier (2011),

Brownlees and Engle (2012) and White et al. (2012). Since the cross-quantilogram

measures quantile dependence between time series, we apply it to measure systemic

risk.

We use the daily CRSP market value weighted index return as the market index

return as in Brownlees and Engle (2012). We consider returns on JP Morgan Chase

(JPM), Goldman Sachs (GS) and AIG as individual �nancial institutions. JPM

belongs to the Depositories group and Brownlees and Engle (2012) put GS with

Broker-Dealers group. AIG belongs to the Insurance group. The sample period is
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from 2 Jan. 2001 to 30 Dec. 2011 with sample size 2; 767. We investigate the

cross-quantilogram �̂�(k) between an individual institution�s stock return and the

market index return for k = 60 and �1 = �2 = 0:05. In each graph, we show

the 95% bootstrap con�dence intervals for no quantile dependence based on 1; 000

bootstrapped replicates.

Figure 4. (a1)-(a3) shows the cross-quantilogram from an individual institution

to the market. The cross-quantilograms are positive and signi�cant for large lags.

The cross-quantilogram from JPM to the market reaches its peak (0:139) at k = 12

and declines steadily afterwards. This means that it takes about two weeks for the

systemic risk from JPM to reach its peak once JPM is in distress. From GS to the

market, it shows a similar pattern by reaching its peak (0:147) at k = 10: However,

from AIG to the market, it exhibits a di¤erent trend by reaching its peak (0:136)

at k = 52: When AIG is in distress, the systemic risk from AIG takes a longer time

(more than two months) to reach its peak.

Figure 4. (b1)-(b3) shows the cross-quantilograms from the market to an individ-

ual institution. The cross-quantilogram for this case is a measure of an individual

institution�s exposure to system wide distress, and is similar to the stress tests per-

formed by individual institutions. From the market to JPM, it reaches its peak

(0:153) at k = 2: From the market to GS, it reaches its peak (0:162) at k = 10 and

declines afterwards. Meanwhile, from the market to AIG, it reaches its peak (0:133)

at k = 27:When the market is in distress, each institution is in�uenced by its impact

in a di¤erent way.

As shown in Figure 4, the cross-quantilogram is a measure for either an institu-

tion�s systemic risk or an institution�s exposure to system wide distress. Compared to

existing methods, one important feature of the cross-quantilogram is that it provides

in a simple manner how such a measure changes as the lag k increases. For
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(a2) GS to Market (b2) Market to GS
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(a3) AIG to Market (b3) Market to AIG
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Figure 4. The sample cross quantilogram �̂�(k). Bar graphs describe sample cross-quantilograms
and dotted lines are the 95% bootstrap con�dence intervals.

example, White et al. (2012) adopts an additional impulse response function within

the multivariate and multi-quantile framework to consider tail dependence for a large

k. Moreover, another feature of the cross-quantilogram is that it does not require any

modeling. For example, the approach by Brownlees and Engle (2012) is based on
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(a2) GS to Market (b2) Market to GS
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(a3) AIG to Market (b3) Market to AIG
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Figure 5. The sample partial cross-quantilogram �̂�jz(k). Bar graphs describe sample
partial quantilograms and dotted lines are the 95% bootstrap con�dence intervals.

the standard multivariate GARCH model and it requires the modeling of the entire

multivariate distribution.

Next, we apply the partial cross-quantilogram to examine the systemic risk after

controlling for an economic state variable. Following Adrian and Brunnermeier (2011)

32



and Bedljkovic (2010), we adopt the VIX index as the economic state variable. Since

the VIX index itself is highly persistent and can be modeled as an integrated process,

we instead use the VIX index change, the �rst di¤erence of the VIX index level, as

the state variable. For the quantile of the state variable, i.e. � in (10), we let � = 0:95

because a low quantile of a stock return is generally associated with a rapid increase

of the VIX index.

Figure 5 shows that the partial cross-quantilograms are still signi�cant in some

cases even if their values are generally smaller than the values of the cross-quantilograms

in Figure 4. This indicates that there still remains systemic risk from an individual

institution after controlling for an economic state variable. These signi�cant partial

cross-quantilograms will be of interest for the management of the systemic risk of an

individual �nancial institution.

Supplementary Materials

Section A: includes all proofs of theorems.

Section B: contains additional Figures.

Section C: provides computer codes and datasets.
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Supplementary Material for
"The Cross-Quantilogram: Measuring Quantile
Dependence and Testing Directional Predictability

between Time Series"

Heejoon Han Oliver Linton Tatsushi Oka Yoon-Jae Whang

A Proofs of Main Results

We use C, C1; C2; : : : to denote generic positive constants without further clari�cation.

In what follows, we assume that A is a compact subset of (0; 1)2, while the results

can be easily extend to the case for which A is the union of a �nite number of disjoint

compact subsets of (0; 1)2.

We de�ne an empirical processes indexed by u = (u1; u2)
| 2 R2 as

VT;k(u) = T�1=2
TX

t=k+1

f1[x1t � u1; x2t�k � u2]�Gk(u)g ;

for k 2 f1; : : : ; pg. The empirical processes based on the stationary bootstrap is

denoted by

V�T;k(u) = T�1=2
TX

t=k+1

�
1[x�1t � u1; x

�
2t�k � u2]� 1[x1t � u1; x2t�k � u2]

	
:

We also consider a sequential empirical process over (s; u) 2 [!; 1] � R2 for some

! 2 (0; 1), given by

VT;k(s; u) = T�1=2
[Ts]X
t=k+1

f1[x1t � u1; x2t�k � u2]�Gk(u)g :

The below lemma shows the weak convergence of the empirical process de�ned above.

We de�ne a set of mean-zero Gaussian process fV1;k(u) : u 2 R2gpk=1 with covariance

1



matrix function given by

�kk0(u; u
0) � E [V1;k(u)V1;k0(u0)] =

1X
l=�1

cov ('l(u; k); '0(u
0; k0)) ;

for k; k0 2 f1; : : : ; pg and u; u0 2 R2, where 't(u; k) � 1[x1t � u1; x2t�k � u2]�Gk(u).

We also de�ne a set of mean-zero Gaussian process fV1;k(s; u) : (s; u) 2 [0; 1]�R2gpk=1
with covariance matrix function given by

E[V1;k(s; u)V1;k0(s0; u0)] = minfs; s0g�kk0(u; u0)

for k; k0 2 f1; : : : ; pg and (s; u); (s0; u0) 2 [0; 1] � R2. Notice that �kk0(u; u0) is equiv-

alent to the (1; 1)th element of the matrix �kk0(�; �0) de�ned in the main text, when

(u; u0) = (q�; q�0).

Lemma A.1 Under Assumption A1-A4,

(a) [VT;1(�); : : : ;VT;p(�)]
|
=) [V1;1(�); : : : ;V1;p(�)]

|
.

(b) [V�T;1(�); : : : ;V�T;p(�)]
|
=)� [V1;1(�); : : : ;V1;p(�)]

|
in probability.

(c) [VT;1(�; �); : : : ;VT;p(�; �)]
|
=) [V1;1(�; �); : : : ;V1;p(�; �)]

|
.

Proof. (a) is proved by the similar argument used in Theorem 7.3 of Rio (2000). (b)

is shown by a slight modi�cation of Theorem 3.1 of Politis and Romano (1994). (c)

can be shown by using the argument in Bucher (2013) with (a).

Also, we de�ne a vector of the one-parameter empirical process:

WT;k(u) =
�
W(1)
T;k(u1);W

(2)
T;k(u2)

�|
;

where W(1)
T;k(u1) = limu2!1VT;k(u) and W

(2)
T;k(u2) = limu1!1VT;k(u). Likewise, the

bootstrap and sequential versions are denoted as follows:

W�
T;k(u) =

�
W(1)�

T;k (u1);W
(2)�
T;k (u2)

�|
; and WT;k(u; s) =

�
W(1)
T;k(u1; s);W

(2)
T;k(u2; s)

�|
;

2



respectively. In the following lemma, we shall obtain an asymptotic linear approxi-

mation for the cross-quantilogram.

Lemma A.2 Suppose that Assumption A1-A4 hold. Then, for each k 2 f1; : : : ; pg,

p
T (�̂�(k)� ��(k)) =

VT;k(q�) +rGk(q�)
|p
T (q̂� � q�)p

�1(1� �1)�2(1� �2)
+ op(1);

uniformly in � 2 A.

Proof. Let 
̂�k(q) = T�1
PT

t=k+1  �1(x1t�q1) �2(x2t�k�q2) and 
�k(q) = E[ �1(x1t�

q1) �2(x2t�k � q2)] for q = (q1; q2)
| 2 R2. Using a similar argument used to show

Lemma 2.1 of Arcones (1998), we can show

sup
�i2Ai

�����T�1=2
TX
t=1

 �i (xit � q̂i(�i))

����� = op(1); (A.1)

for i = 1; 2. It follows that, uniformly in � 2 A,


̂�k(q̂�) = T�1
TX

t=k+1

1[x1t � q̂1(�1); x2t�k � q̂2(�2)]� �1�2 + op(T
�1=2);

and T�1
PT

t=k+1  
2
�i
(xit � q̂i(�i)) = �i(1� �i) + op(1) for i = 1; 2: Thus, we have

p
T f�̂�(k)� ��(k)g =

p
T f
̂�k(q̂�)� 
�k(q�)gp
�1(1� �1)�2(1� �2)

+ op(1);

uniformly in � 2 A.

The remaining task is to obtain a uniform asymptotic approximation of
p
Tf
̂�k(q̂�)�


�k(q�)g. Since 
�k(q�) = Gk(q�)� �1�2, we have

p
T f
̂�k(q̂�)� 
�k(q�)g = VT;k(q̂�) +

p
T fGk(q̂�)�Gk(q�)g :

Let EM denote the event that sup�2A kq̂� � q�k � MT�1=2 for some M > 0 and EcM

3



be the complement of EM . Given an arbitrary constants � > 0 and � > 0, we have

P

�
sup
�2A

jVT;k(q̂�)� VT;k(q�)j > � and EM
�
� P

 
sup
U(�)

��VT;k(u(2))� VT;k(u(1))�� > �

!
;

(A.2)

for a su¢ ciently large T , where U(�) = f(u(2); u(1)) 2 R2 : ku(2) � u(1)k � �g. From

Lemma A.1, VT;k(�) is stochastically equicontinuous and thus the right-hand side of

(A.2) converges to zero for some � as T !1. An application of Lemma A.1 and A.5

shows that limT!1 P (EcM) = 0 for some M > 0, which implies

lim
T!1

P

�
sup
�2A

jVT;k(q̂�)� VT;k(q�)j > �

�
= 0:

Because Gk(�) is di¤erentiable from Assumption A4, the mean value expansion yields

p
T fGk(q̂�)�Gk(q�)g = rGk(�q�)

|p
T (q̂� � q�) ;

uniformly in � 2 A, where �q� = (�q1(�1); �q2(�2))
|
with �qi(�i) being between q̂i(�i)

and qi(�i) for i = 1; 2. It follows that

p
T f
̂�k(q̂�)� 
�k(q�)g = VT;k(q�) +rGk(q�)

|p
T (q̂� � q�) + op(1);

uniformly in � 2 A.

Proof of Theorem 1. From the uniform Bahadur representation, we have

p
T fq̂i(�i)� qi(�i)g =

1

fi(qi(�i))
W(i)
T;k (qi(�i)) + op(1); (A.3)

uniformly in �i 2 Ai, for i = 1; 2. We de�ne an empirical process indexed by � 2 A

as

�T;k(�) =
�
VT;k(q�);WT;k(q�)

|�|
:

4



Then, Lemma A.2 together with (A.3) implies that, for every k 2 f1; : : : ; pg,

p
T (�̂�(k)� ��(k)) = �

|
�k�T;k(�) + op(1);

uniformly in � 2 A, where ��k is de�ned in (4).

We �rst prove

sup
�2A




�̂(p)� � �(p)�




 = op(1):

Using the Cauchy-Schwarz inequality, we have j�|�k�T;k(�)j � k��kkk�T;k(�)k. From

Assumption A2 and A4, k��kk is bounded uniformly in � 2 A. Furthermore, Lemma

A:1 implies that sup�2A k�T;k(�)k = Op(1), which together with the cr-inequality

leads to that sup�2A k�̂�(k)� ��(k)k �
Pp

k=1 sup�2A j�̂
(p)
� � �

(p)
� j = op(1).

To show (3), let �(p)� = diag(�
|
�1; : : : ; �

|
�p) and �

(p)
T (�) = [�T;1(�); : : : ; �T;p(�)]

|
.

Then, we have
p
T
�
�̂(p)� � �(p)�

�
= �(p)� �

(p)
T (�) + op(1);

uniformly in � 2 A. From Lemma A.1, we can establish the the �nite dimensional

distributions convergence of �(p)� �
(p)
T (�) over � 2 A and it su¢ ces to show the sto-

chastic equicontinuity of �(p)� �
(p)
T (�). An application of the cr-inequality with the

uniform boundedness of ��k over � 2 A yields that, for any �; � 2 A,


�(p)� �
(p)
T (�)� �

(p)
� �

(p)
T (�)




 � pX
k=1

fC k�Tk(�)� �Tk(�)k+ k��k � ��kkk�Tk(�)kg :

Let �; � 2 A with k���k � � for some � > 0. FromAssumption A2, inf�i2Ai fi(q(�i)) �

C1 for some C1 > 0. It follows that kq� � q�k � ~� � C�11 �, because �i � �i =R qi(�i)
qi(�i)

fi(v)dv for each i = 1; 2, by de�nition. It follows that

sup
�;�2A:k���k��

k�T;k(�)� �T;k(�)k � sup
U( ~�)

��VT;k(u(2))� VT;k(u(1))��
+sup
U( ~�)



WT;k(u
(2))�WT;k(u

(1))


 ;
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where U(~�) = f(u(2); u(1)) 2 R2 : ku(2)�u(1)k � ~�g. Lemma A.1 implies the stochastic

equicontinuity of VT;k(�) andWT;k(�), which yields that, for arbitrarily small positive

constants � and �, there exist an � > 0 such that

lim
T!1

P

 
sup

�;�2A:k���k��
k�T;k(�)� �T;k(�)k > �

!
< �:

From Lemma A.1, sup�2A k�Tk(�)k = Op(1) and the uniform continuity of ��k un-

der Assumption A2 and A4 implies sup�;�2A:k���k�� k��k � ��kk = o(1) for some

� > 0. Collecting the results given the �nite lag order, we establish the stochastic

equicontinuity, from which (3) follows.

Lemma A.3 Suppose that Assumption A1-A5 hold. Then,

p
T (�̂��(k)� �̂�(k)) =

V�T;k(q�) +rGk(q�)
|p
T (q̂�� � q̂�)p

�1(1� �1)�2(1� �2)
+ r�3;T (�)

where P �(sup�2A jr�3;T (�)j > �)!p 0 for every � > 0.

Proof. This proof is similar to the proof of Lemma A.2 and thus we outline the

key steps. First, we consider 
̂��k(q̂
�
�) � 
̂�k(q̂�), where 
̂

�
�k(q) =

PT
t=k+1  �1(x

�
1t �

q1) �2(x
�
2t�k � q2) for q = (q1; q2)

| 2 R2. It can be shown that, for i = 1; 2,

P �

 
sup
�i2Ai

�����T�1=2
TX
t=1

 �i (x
�
it � q̂�i (�i))

����� > �

!
= op(1): (A.4)

for any � > 0, which together with (A.1) implies

p
T f
̂��k(q̂��)� 
̂�k(q̂�)g = V�T;k(q̂��)+VT;k(q̂��)�VT;k(q̂�)+Gk(q̂��)�Gk(q̂�)+r�1;T (�);

where P �(sup�2A jr�T (�)j > �) = op(1) for any � > 0.

From Theorem 2 of Doss and Gill (1992), P �(sup�2A kq̂���q̂�k > M1T
�1=2) = op(1)

for someM1 > 0. Since sup�2A kq̂��q�k = OP (T
�1=2), we have P �

�
sup�2A kq̂�� � q�k �M2T

�1=2� =
6



op(1) for someM2 > 0. Lemma A.1(b) implies the stochastic equicontinuity of V�T;k(�)

conditional on the original sample, thereby yielding that, for any � > 0,

P �
�
sup
�2A

jV�Tk(q̂��)� V�Tk(q�)j > �

�
= op(1):

Similarly, Lemma A.1 implies that, for any � > 0,

P �
�
sup
�2A

jVTk(q̂��)� VTk(q̂�)j > �

�
= op(1):

Thus, it follows from the mean-value expansion that

p
T f
̂��k(q̂��)� 
̂�k(q̂�)g = V��k(q�) +rGk(q�)

|p
T (q̂�� � q̂�) + r�2;T (�);

where P �(sup�2A jr�2;T (�)j > �) = op(1) for any � > 0.

Next, we consider the denominator. It can be shown that

sup
�12A1

�����T�1
TX

t=k+1

 2�1 (x
�
1t � q̂�1(�1))� �1(1� �1)

����� � sup
�12A1

�����T�1
TX
t=1

 �i (x
�
it � q̂�i (�i))

�����
where the right-hand side converges to zero in probability, conditional on the orig-

inal sample from (A.4). A similar argument can apply for the other term of the

denominator and thus we obtain desired result.

Proof of Theorem 2. As in the proof of Theorem 2 of Doss and Gill (1992), we

have the uniform Bahadur representation

p
T fq̂�i (�i)� q̂i(�i)g =

1

fi(q̂i(�i))
W(i)�
T;k (q̂i(�i)) + r

�
T1(�);

for i = 1; 2, where P �(sup�i2Ai jr�T1(�i)j > �) = op(1) for any � > 0. Since
p
Tfq̂� �

q�g = Op(1) uniformly in � 2 A, Lemma A.1(b) and A.3 imply implies that, for every

k 2 f1; : : : ; pg,
p
T (�̂��(k)� �̂�(k)) = �

|
�k�

�
T;k(�) + r�T2(�);
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where P �(sup�2A jr�T2(�)j > �) = op(1) for any � > 0, ��k is de�ned in (4), and

��T;k(�) = [V�T;k(q�);W�
T;k(q�)

|
]
|
. We de�ne �(p)� = diag(�

|
�1; : : : ; �

|
�p) and �

(p)�
T (�) =

[��T;1(�); : : : ; �
�
T;p(�)]

|
. Then, we have

p
T
�
�̂(p)� � �(p)�

�
= �(p)� �

(p)�
T (�) + r�T3(�);

where P �(sup�2A jr�T3(�)j > �) = op(1) for any � > 0. The cross-quantilogram based

on the SB resample is linearly depend on the empirical process based on the SB

resample. Since Lemma A.1(b) shows the validity of SB method for the empirical

distribution function and the similar argument used to show Theorem 1 can apply

for the rest of the proof.

Proof of Theorem 3. Under both �xed and local alternatives, Lemma A.2 implies

p
T
�
�̂(p)� � �(p)�

�
= �(p)� �

(p)
T (�) + op(1):

uniformly in � 2 A, and it follows from Theorem 1 that

�(p)� �
(p)
T (�) = OP (1);

uniformly in � 2 A.

(a) Under the �xed alternative, there is some � 2 A such that �� is some non-zero

constant and then
p
T �̂(p)� = �(p)� �

(p)
T (�) +

p
T�(p)� + op(1):

This implies that, under the �xed alternative,

sup
�2A

Q̂(p)� = T sup
�2A

k�(p)� k2 (1 + op(1)) :

Thus, sup�2A Q̂
(p)
� !p 1 under the �xed alternative, whereas the critical value c�Q;� is

bounded in probability from Theorem 2. Therefore, limT!1 P (sup�2A Q̂
(p)
� > c�Q;� ) =

8



1. Therefore, our test is shown to be consistent under the �xed alternative.

(b) Under the local alternative, we can write �(p)� = �(p)� =
p
T , where �(p)� is a

p-dimensional constant vector, at least one of elements is non-zero. Thus, we have

Q̂(p)� = k�(p)� �
(p)
T (�) + �(p)� k2 + oP (1);

uniformly in � 2 A. From Theorem 1 and the continuous mapping theorem,

sup
�2A

Q̂(p)� =) sup
�2A

k�(p)� B(p)(�) + �(p)� k2:

Also, Theorem 2 implies

sup
�2A

Q̂(p)�� =)� sup
�2A

k�(p)� B(p)(�)k2;

in probability. Thus, the desired result follows.

Lemma A.4 Suppose that Assumption A1-A4 hold. Then, for each k 2 f1; : : : ; pg

and for each � 2 A,

p
T
�
�̂�;[Tr](k)� ��(k)

�
=
r�1Vk(q�; r) +rGk(q�)

|p
T
�
q̂�;[Tr] � q�

�p
�1(1� �1)�2(1� �2)

+ op(1);

uniformly in r 2 [!; 1].

Proof. The proof follows the line of Lemma A.2, using Lemma A.1(c) and Lemma

A.5. We omit the details.

Proof of Theorem 4. Lemma A.5 shows that, for i = 1; 2,

p
T
�
q̂i[Tr](�i)� qi(�i)

	
=

1

rfi(qi(�i))
W(i)
T;k (qi(�i); r) + op(1); (A.5)

9



uniformly in r 2 [!; 1]. We de�ne an empirical process indexed by r 2 [!; 1],

��T;k;�(r) =
�
VT;k(q�; r);WT;k(q�; r)

|�|
;

and let ��(p)T;�(�) = [��T;1;�(�); : : : ; ��T;p;�(�)]
|
. Then, Lemma A.4 together with (A.5)

implies
p
T
�
�̂
(p)
�;[Tr] � �(p)�

�
= r�1�(p)� ��

(p)
T;�(1) + op(1);

uniformly in r 2 [!; 1]. It follows that

[Tr]p
T

�
�̂
(p)
�;[Tr] � �̂

(p)
�;T

�
= �(p)�

n
��
(p)
T;�(r)� r��

(p)
T;�(1)

o
+ op(1);

uniformly in r 2 [!; 1]. From Lemma A.1(c), f��(p)T;�(r)� r��
(p)
T;�(1) : r 2 [!; 1]g weakly

converges to the Brownian bridge process f�(p)
� (�B(p)(r)� r�B(p)(1)) : r 2 [!; 1]g with

�
(p)
� (�

(p)
� )0 � �(p)(�; �), and thus it follows from the continuous mapping theorem

that

Â�p =)
�
�(p)� �

(p)
�

�
Ap
�
�(p)� �

(p)
�

�|
:

Since
p
T �̂

(p)
�;T =) (�

(p)
� �

(p)
� )�B(p)(1), we have

Ŝ(p)� =) �B(p)(1)|A�1p �B(p)(1):

We complete the proof.

Proof of Theorem 5. Under both �xed and local alternative, the argument used

in Theorem 4 gives

p
T
�
�̂
(p)
�;[Tr] � �(p)�

�
= r�1�(p)� ��

(p)
T;�(r) + op(1);

thereby yielding Â�p =) (�
(p)
� �

(p)
� )Ap(�(p)� �(p)

� )
|
.
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(a) Under the �xed alternative, we have

p
T �̂

(p)
�;T = �

(p)
� ��

(p)
T;�(1) +

p
T�(p)� + op(1);

where the right-hand side diverges in probability as T !1. Since the critical value

we use is �nite in probability from Theorem 4, we obtain the desired result.

(b) Under the local alternative,

p
T �̂

(p)
�;T = �

(p)
� ��

(p)
T;�(1) + �(p)� + op(1):

It follows that

Ŝ(p)� !d
n
�B(p)(1) + (�(p)� �(p)

� )
�1�(p)�

o|
A�1p

n
�B(p)(1) + (�(p)� �(p)

� )
�1�(p)�

o
:

We complete the proof.

Proof of Theorem 6. Consider (a). Two l-dimensional vectors, �z1 and �z2, and

a l � l matrices �z and their sample analogues, �̂z1 and �̂z2, satisfy the following

partitioned matrices:

R�k =

266664
r�k;11 r�k;12 �

|
z1

r�k;21 r�k;22 �
|
z2

�z1 �z1 �z

377775 and R̂�k =

266664
r̂�k;11 r̂�k;12 �̂

|
z1

r̂�k;21 r̂�k;22 �̂
|
z2

�̂z1 �̂z1 �̂z

377775 :
Then, we can write

p�k;ij = r�k;ij � �
|
zi�

�1
z �zj and p̂�k;ij = r̂�k;ij � �̂

|
zi�̂

�1
z �̂zj;

for i; j 2 f1; 2g. From Theorem 1(a), we have

R̂�k = R�k + op(1);

11



which leads to that p̂�k;12 = p�k;12 + op(1) and that

p
T (p̂�k;12 � p�k;12) =

p
T (r̂�k;12 � r�k;12)� �

|
z1�

�1
z

p
T (�̂z2 � �z2) + op(1):

Applying arguments used to prove Lemma A.2, we can show

p
T (p̂�k;12 � p�k;12) = �

(1)|

�k;zT
�1=2

TX
t=k+1

~�1t(�; k) + �
(2)|

�k;z

p
T

264 q̂� � q�

q̂z � qz

375+ op(1):

This together with the Bahadur representation yields

p
T
�
�̂�jz(k)� ��jz(k)

	
= �

|
�k;z~�T;kz(�) + op(1)

where ~�T;kz(�) = T�1=2
PT

t=k+1
~�t(�; k).

The asymptotic normality of �T;k;z(�) can be established by using the central limit

theorem for mixing random vectors. The proof of (b) and (c) are similar to that of

Theorem 2 and Theorem 5, respectively, and thus we omit the details.

Technical Lemma

The following lemma shows that the quantile estimator based on subsample has

the Bahadur representation uniformly in both quantiles and subsample sizes. Let

fyt : t 2 Zg be a strict stationary sequence of real-valued random variables with

distribution function Fy and its density fy. Assume that fyt : t 2 Zg satis�es As-

sumption A1-A4. We consider quantile estimators based on subsamples, fq̂y;[Tr](�) :

� 2 T � (0; 1); ! � r � 1g, for the true quantile function qy(�). De�ne WT (v; r) =

T�1=2
P[Tr]

t=1 f1[yt � v]� Fy(v)g for (v; r) 2 R� [!; 1]

Lemma A.5 Under Assumptions A1-A4,

p
T
�
q̂y;[Tr](�)� qy(�)

	
=

1

rfy(qy(�))
WT (qy(�); r) +RT (� ; r);

12



where sup(�;r)2T �[!;1] jRT (� ; r)j = op(1).

Proof. We de�ne a localized objective function based on the subsample:

M[Tr](v; �) =

[Tr]X
t=1

�
�� (yt � qy(�)� T�1=2v)� �� (yt � qy(�))

	
;

for every �xed v 2 R with some constant B > 0. Then,
p
Tfq̂y;[Tr](�) � qy(�)g =

argminv:jvj�BM[Tr](v; �) for every (� ; r) 2 T �[!; 1]. Also, de�ne a quadratic function:

Q[Tr](v; �) = �WT (qy(�); r)v + rfy(qy(�))
v2

2
:

Notice that frfy(qy(�))g�1WT (qy(�); r) = argminQ[Tr](v; �). As in Theorem 2 of

Kato (2009), the desired result follows from the convexity of M[Tr](�; �) with respect

to the �rst argument, if we show

sup
(�;r)2T �[!;1]

��M[Tr](v; �)�Q[Tr](v; �)
�� = oP (1); (A.6)

for every �xed v 2 R. From Knight�s identity (Knight (1998)), we have

�� (yt � qy(�)� T�1=2v)� �� (yt � qy(�)) +  � (yt � qy(�))T
�1=2v

= vT�1=2
Z 1

0

 � (yt � qy(�)� T�1=2vs)�  � (yt � qy(�))ds;

which leads to

M[Tr](v; �)�Q[Tr](v; �) = v

Z 1

0

V[Tr] (vs; �) ds;

where

V[Tr] (vs; �) = WT (qy(�) + T�1=2vs; r)�WT (qy(�); r)

+rvs

Z 1

0

�
fy(qy(�) + T�1=2vsl)� fy(qy(�))

	
dl:

13



Because s 2 (0; 1) and jvj � B, we have

��M[Tr](v; �)�Q[Tr](v; �)
�� � sup

b:jbj�B

��WT (qy(�) + T�1=2b; r)�WT (qy(�); r)
��

+B sup
b:jbj�B

��fy(qy(�) + T�1=2b)� fy(qy(�))
�� ;

for any (� ; r) 2 T � [!; 1]. The stochastic equicontinuity of WT (�; �) from Lemma

A.1(c) yields

sup
b:jbj�B

sup
(�;r)2T �[!;1]

��WT (qy(�) + T�1=2b; r)�WT (qy(�); r)
�� = op(1):

Also, it follows from Assumption A3 that

sup
b:jbj�B

sup
�2T

��fy(qy(�) + T�1=2b)� fy(qy(�))
�� = op(1):

Thus, we establish (A.6) and complete the proof.
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B Tables and Figures

Tables B1 and B2 provide simulation results for the self-normalized statistics using

the trimming parameter ! = 0:05: See Section 5.2 of our paper. In Figures B1(a)-

B3(b), we provide the cross-quantilogram �̂�(k) and the portmanteau tests Q̂
(p)
� with

self-normalized con�dence intervals for no predictability. See Section 6.1 of our paper.

Table B1. (size) Empirical Rejection Frequencies of the Self-Normalized Statistics
for ! = 0:05

(DGP1 and the nominal level: 5%)
Quantiles (�1 = �2)

T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95
500 1 0.173 0.038 0.033 0.031 0.027 0.028 0.026 0.034 0.196

2 0.277 0.031 0.022 0.021 0.023 0.021 0.018 0.030 0.342
3 0.376 0.032 0.019 0.016 0.019 0.015 0.017 0.029 0.445
4 0.456 0.025 0.011 0.010 0.015 0.010 0.012 0.030 0.537
5 0.514 0.029 0.008 0.008 0.007 0.007 0.008 0.034 0.610

1000 1 0.051 0.034 0.037 0.037 0.034 0.034 0.032 0.036 0.061
2 0.093 0.027 0.029 0.026 0.027 0.027 0.028 0.027 0.102
3 0.124 0.026 0.021 0.018 0.023 0.020 0.022 0.029 0.144
4 0.160 0.021 0.015 0.013 0.015 0.017 0.016 0.021 0.178
5 0.189 0.019 0.011 0.013 0.010 0.012 0.011 0.023 0.208

2000 1 0.042 0.034 0.039 0.039 0.041 0.045 0.035 0.035 0.052
2 0.046 0.032 0.029 0.031 0.032 0.037 0.030 0.028 0.050
3 0.047 0.026 0.021 0.031 0.030 0.029 0.025 0.025 0.057
4 0.051 0.024 0.018 0.018 0.021 0.019 0.022 0.020 0.057
5 0.054 0.021 0.016 0.019 0.020 0.017 0.015 0.017 0.057

Notes: The �rst and second columns report the sample size T and the number of lags p

for the test statistics Q̂p�. The rest of columns show empirical rejection frequencies given

simulated critical values at 5% signi�cance level. The trimming value ! is set to be 0.05.
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Table B2. (power) Empirical Rejection Frequencies of the Self-Normalized Statistics
for ! = 0:05

(DGP2: GARCH-X process)
Quantiles (�1 = �2)

T p 0.05 0.10 0.20 0.30 0.50 0.70 0.80 0.90 0.95
500 1 0.134 0.261 0.266 0.110 0.031 0.124 0.262 0.258 0.103

2 0.102 0.170 0.177 0.068 0.024 0.075 0.185 0.160 0.082
3 0.144 0.111 0.110 0.041 0.016 0.048 0.119 0.093 0.155
4 0.221 0.076 0.074 0.033 0.012 0.033 0.086 0.061 0.268
5 0.310 0.057 0.053 0.023 0.008 0.021 0.061 0.047 0.371

1000 1 0.364 0.562 0.527 0.235 0.038 0.232 0.517 0.555 0.339
2 0.236 0.457 0.421 0.168 0.025 0.178 0.423 0.455 0.219
3 0.164 0.356 0.326 0.114 0.021 0.131 0.342 0.345 0.160
4 0.140 0.276 0.249 0.086 0.018 0.097 0.260 0.262 0.140
5 0.147 0.219 0.201 0.067 0.011 0.062 0.201 0.207 0.144

2000 1 0.683 0.848 0.795 0.442 0.043 0.448 0.811 0.848 0.670
2 0.567 0.787 0.735 0.359 0.035 0.370 0.752 0.790 0.549
3 0.463 0.711 0.673 0.287 0.025 0.298 0.673 0.710 0.447
4 0.379 0.647 0.593 0.220 0.017 0.242 0.614 0.639 0.368
5 0.312 0.583 0.536 0.188 0.014 0.193 0.557 0.572 0.285

Notes: Same as Table 3.
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Figure B1(a). The sample cross quantilogram �̂�(k) for �2= 0:1 to detect directional
predictability from stock variance to stock return. Bar graphs describe sample cross-
quantilograms and lines are the 95% self-normalized con�dence intervals.
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Figure B1(b). Box-Ljung test statistic Q̂(p)� for each lag p and quantile � using �̂�(k) with
�2= 0:1. The dashed lines are the 95% self-normalized con�dence intervals.
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Figure 2(a). The sample cross quantilogram �̂�(k) for �2= 0:5 to detect directional pre-
dictability from stock variance to stock return. Same as Figure B1(a)..
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Figure 2(b). Box-Ljung test statistic Q̂(p)� for each lag p and quantile � using �̂�(k) with
�2= 0:5. Same as Figure B1(b).
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Figure 3(a). The sample cross quantilogram �̂�(k) for �2= 0:9 to detect directional pre-
dictability from stock variance to stock return. Same as Figure B1(a).
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Figure 3(b). Box-Ljung test statistic Q̂(p)� for each lag p and quantile � using �̂�(k) with
�2= 0:9. Same as Figure B1(b).
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C Computer Codes

We provide the R-package, "quantilogram_0.1.tar.gz", and its manual. As explained

in the manual, the package includes the datasets for two empirical applications

presented in our paper and contains critical values for the self-normalized statis-

tics. We also provide two R-codes, "Application_StockReturn.R" and Applica-

tion_SystemicRisk.R for the applications, using the package.
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